Advertisements
Advertisements
प्रश्न
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
उत्तर
`(1/5 + i2/5) - (4 + i 5/2 )`
= `1/5 + 2/5 i-4 - 5/2i`
= `(-4+1/5) + (2/5-5/2)i`
= `((1 - 20)/5) + i ((4 - 25)/10)`
= `(-19)/5 + (4 - 25)/10 i`
= `(-19)/5 + (-21)/10i`
APPEARS IN
संबंधित प्रश्न
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1}{i}\] is equal to
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If z is a complex number, then
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i35
Evaluate the following : i116
Evaluate the following : i403
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`