हिंदी

Find the Real Value of X and Y, If ( 3 X − 2 I Y ) ( 2 + I ) 2 = 10 ( 1 + I ) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]

उत्तर

\[ \left( 3x - 2iy \right) \left( 2 + i \right)^2 = 10 \left( 1 + i \right)\]

\[ \Rightarrow \left( 3x - 2iy \right)\left( 4 + i^2 + 4i \right) = 10\left( 1 + i \right)\]

\[ \Rightarrow \left( 3x - 2iy \right)\left( 3 + 4i \right) = 10\left( 1 + i \right)\]

\[ \Rightarrow 9x + 12xi - 6iy - 8 i^2 y = 10 + 10i\]

\[ \Rightarrow 9x + 8y + i\left( 12x - 6y \right) = 10 + 10i\]

\[\text{Comparing both the sides:} \]

\[9x + 8y = 10 . . . . (1)\]

\[12x - 6y = 10\]

\[or, 6x - 3y = 5 . . . (2)\]

\[\text { Multiplying equation (1) by 3 and equation (2) by 8 }, \]

\[27x + 24y = 30 . . . . (3) \]

\[48x - 24y = 40 . . . . (4)\]

\[\text {Adding equations (3) and (4):} \]

\[75x = 70\]

\[ \therefore x = \frac{14}{15}\]

\[\text { Substituting the value of x in equation (1): } \]

\[9 \times \frac{14}{15} + 8y = 10\]

\[ \Rightarrow \frac{126}{15} + 8y = 10\]

\[ \Rightarrow 8y = 10 - \frac{126}{15}\]

\[ \Rightarrow 8y = \frac{24}{15}\]

\[ \Rightarrow y = \frac{1}{5}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 2.2 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Write 1 − i in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×