Advertisements
Advertisements
प्रश्न
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
उत्तर
\[ \left( 3x - 2iy \right) \left( 2 + i \right)^2 = 10 \left( 1 + i \right)\]
\[ \Rightarrow \left( 3x - 2iy \right)\left( 4 + i^2 + 4i \right) = 10\left( 1 + i \right)\]
\[ \Rightarrow \left( 3x - 2iy \right)\left( 3 + 4i \right) = 10\left( 1 + i \right)\]
\[ \Rightarrow 9x + 12xi - 6iy - 8 i^2 y = 10 + 10i\]
\[ \Rightarrow 9x + 8y + i\left( 12x - 6y \right) = 10 + 10i\]
\[\text{Comparing both the sides:} \]
\[9x + 8y = 10 . . . . (1)\]
\[12x - 6y = 10\]
\[or, 6x - 3y = 5 . . . (2)\]
\[\text { Multiplying equation (1) by 3 and equation (2) by 8 }, \]
\[27x + 24y = 30 . . . . (3) \]
\[48x - 24y = 40 . . . . (4)\]
\[\text {Adding equations (3) and (4):} \]
\[75x = 70\]
\[ \therefore x = \frac{14}{15}\]
\[\text { Substituting the value of x in equation (1): } \]
\[9 \times \frac{14}{15} + 8y = 10\]
\[ \Rightarrow \frac{126}{15} + 8y = 10\]
\[ \Rightarrow 8y = 10 - \frac{126}{15}\]
\[ \Rightarrow 8y = \frac{24}{15}\]
\[ \Rightarrow y = \frac{1}{5}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i30 + i80 + i120
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The argument of \[\frac{1 - i}{1 + i}\] is
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i888
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
Show that `(-1 + sqrt3 "i")^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`
Show that `(-1+sqrt3i)^3` is a real number.