Advertisements
Advertisements
प्रश्न
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
पर्याय
-1
-2
-3
-4
उत्तर
-2
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\]
\[ = \frac{i^{4 \times 148} + i^{4 \times 147 + 2} + i^{4 \times 147} + i^{4 \times 146 + 2} + i^{4 \times 146}}{i^{4 \times 145 + 2} + i^{4 \times 145} + i^{4 \times 144 + 2} + i^{4 \times 144} + i^{4 \times 143 + 2}} - 1 \left[ \because i^4 = 1 \text { and } i^2 = - 1 \right]\]
\[ = \frac{1 + i^2 + 1 + i^2 + 1}{i^2 + 1 + i^2 + 1 + i^2} - 1\]
\[ = \frac{1}{- 1} - 1 \]
\[ = - 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Write (i25)3 in polar form.
Write 1 − i in polar form.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The polar form of (i25)3 is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The argument of \[\frac{1 - i}{1 + i}\] is
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Show that `(-1 + sqrt(3)"i")^3` is a real number
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Show that `(-1+ sqrt(3)i)^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.