मराठी

The Polar Form of (I25)3 is - Mathematics

Advertisements
Advertisements

प्रश्न

The polar form of (i25)3 is

पर्याय

  • \[\cos\frac{\pi}{2} + i \sin\frac{\pi}{2}\]

  • cos π + i sin π

  •  cos π − i sin π

  • \[\cos\frac{\pi}{2} - i \sin\frac{\pi}{2}\]

MCQ

उत्तर

\[\cos\frac{\pi}{2} - i \sin\frac{\pi}{2}\]

(i25)3 = (i)75

= (i)4 \[\times\] 18+ 3

   = (i)3
    =\[-\] i                (\[\because\] 
i4=1)

\[\text { Let } z = 0 - i \]

\[\text { Since, the point (0, - 1) lies on the negative direction of imaginary axis }. \]

\[\text { Therefore,} \arg (z) = \frac{- \pi}{2}\]

Modulus, r =\[\left| z \right| = \left| 1 \right| = 1\]

\[\therefore\] Polar form = (cos \[\theta\] + sin \[\theta\])

= cos \[\left( \frac{- \pi}{2} \right)\] +sin \[\left( \frac{- \pi}{2} \right)\]

= cos \[\frac{\pi}{2}\] \[-\] sin \[\frac{\pi}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 6 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i35 


Evaluate the following : i93  


Evaluate the following : i116 


Evaluate the following : `1/"i"^58`


State True or False for the following:

2 is not a complex number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×