Advertisements
Advertisements
प्रश्न
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
उत्तर
\[\text{Let} z = \sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \sin\frac{\pi}{5} \right)^2 + \left( 1 - \cos\frac{\pi}{5} \right)^2}\]
\[ = \sqrt{\sin^2 \frac{\pi}{5} + 1 + \cos^2 \frac{\pi}{5} - 2\cos\frac{\pi}{5}}\]
\[ = \sqrt{2 - 2\cos\frac{\pi}{5}}\]
\[ = \sqrt{2}\left( \sqrt{1 - \cos\frac{\pi}{5}} \right)\]
\[ = \sqrt{2}\left( \sqrt{2 \sin^2 \frac{\pi}{10}} \right)\]
\[ = 2\sin\frac{\pi}{10}\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} . \text { Then }, \]
\[\tan\beta = \frac{\left| 1 - \cos\frac{\pi}{5} \right|}{\left| \sin\frac{\pi}{5} \right|} = \left| \frac{2 \sin^2 \frac{\pi}{10}}{2\sin\frac{\pi}{10}\cos\frac{\pi}{10}} \right| = \left| \tan\frac{\pi}{10} \right|\]
\[ \Rightarrow \beta = \frac{\pi}{10}\]
\[\text { Clearly, z lies in the first quadrant . Therefore }, \arg\left( z \right) = \frac{\pi}{10}\]
\[\text {Hence, the polar form of z is } \]
\[2\sin\frac{\pi}{10}\left( \cos\frac{\pi}{10} + i\sin\frac{\pi}{10} \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
i457
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Write 1 − i in polar form.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Which of the following is correct for any two complex numbers z1 and z2?
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i116
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
2 is not a complex number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8