मराठी

Express the following complex number in the standard form a + i b: (11−4i−21+i)(3−4i5+i) - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]

बेरीज

उत्तर

`(1/(1 - 4i) - 2/(1 + i))((3 - 4i)/(5 + i))`

= `(1 + i - 2(1 - 4i))/((1 - 4i)(1 + i)) xx (3 - 4i)/(5 + i)`

= `(1 + i - 2 + 8i)/(1(1 + i)-4i(1 + i))xx (3 - 4i)/(5 + i)`

= `(-1+9i)/((1 + i - 4i + 4)) xx (3 - 4i)/(5 + i)`

= `(-1 + 9i)/((1 + i - 4i + 4)) xx (3 - 4i)/(5 + i)`

= `(-1(3 - 4i) + 9i(3 - 4i))/((5 - 3i)(5 + i))`

= `(-3 + 4i + 27i + 36)/(5(5 + i)-3i(5 + i))`

= `(33 + 31j)/(25 + 5i - 15i + 3)`

= `(33 + 31j)/(28 - 10i)`

= `(33 + 31j)/(28 - 10i) xx ((28 + 10i))/(28 + 10i)`

= `(33 xx 28 + 33 xx 10i + 31i xx 28 + 31i xx 10i)/(28^2 + 10^2)`

= `(924 + 330i + 868i - 310)/(784 + 100)`

= `(614 + 1198i)/(884)`

= `614/884 + (1198)/884 i`

= `307/442 + 599/442 i`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 1.11 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate the following:

i457


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Write 1 − i in polar form.


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


The argument of \[\frac{1 - i}{1 + i}\] is


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


State True or False for the following:

2 is not a complex number.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×