Advertisements
Advertisements
प्रश्न
The argument of \[\frac{1 - i}{1 + i}\] is
पर्याय
\[- \frac{\pi}{2}\]
\[\frac{\pi}{2}\]
\[\frac{3\pi}{2}\]
\[\frac{5\pi}{2}\]
उत्तर
\[- \frac{\pi}{2}\]
\[\text { Let } z = \frac{1 - i}{1 + i}\]
\[ \Rightarrow z=\frac{1 - i}{1 + i}\times\frac{1 - i}{1 - i}\]
\[ \Rightarrow z=\frac{1 + i^2 - 2i}{1 - i^2}\]
\[ \Rightarrow z = \frac{1 - 1 - 2i}{1 + 1}\]
\[ \Rightarrow z=\frac{- 2i}{2}\]
\[ \Rightarrow z= - i\]
\[\text { Since, z lies on negative direction of imaginary axis } . \]
\[\text { Therefore, } \arg (z) = \frac{- \pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write the argument of −i.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i35
Evaluate the following : i93
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
State True or False for the following:
The order relation is defined on the set of complex numbers.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8