Advertisements
Advertisements
प्रश्न
Show that `(-1 + sqrt(3)"i")^3` is a real number
उत्तर
`(-1 + sqrt(3)"i")^3`
`= (-1)^3 + 3(-1)^2 (sqrt(3)"i") + 3(-1) (sqrt(3)"i")^2 + (sqrt(3"i"))^3` ...[(a + b)3 = a3 + 3a2b + 3ab2 + b3]
= `-1 + 3sqrt(3)"i" - 3(3"i"^2) + 3sqrt(3)"i"^3`
= `-1 + 3sqrt(3)"i" - 3(-3) - 3sqrt(3)"i"` ...[∵ i2 = – 1, i3 = – i]
= `-1 + 3sqrt(3)"i" + 9 - 3sqrt(3)"i"` ...[∵ i2 = – 1, i3 = – i]
= – 1 + 9
= 8, which is a real number
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The amplitude of \[\frac{1}{i}\] is equal to
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
Evaluate the following : i93
Evaluate the following : i–888
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.