Advertisements
Advertisements
प्रश्न
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
उत्तर
i6 = (i2)3 = (– 1)3 = – 1
i7 = i6 × i = (i2)3i = (– 1)3i = – i
i11 = i10 × i = (i2)5i = (– 1)5i = – i
`∴(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
`= (3 + 2/"i")(-1 - (-"i"))(1 +(-"i"))`
`= (3 + 2/"i")(-1 + "i")(1 - "i")`
= `(3 + 2/"i")(1 - "i")(1 - "i")`
= `(3 + (2"i")/"i"^2)(-1 + "i" + "i" - "i"^2)`
= `(3 + (2"i")/(-1))[-1 + 2"i" - (-1)]`
= (3 - 2i)(2i)
= 3(2i) - 2i(2i)
= 6i - 4i2
= 6i - 4(- 1)
= 6i + 4
= 4 + 6i
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write 1 − i in polar form.
Write the argument of −i.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The principal value of the amplitude of (1 + i) is
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The amplitude of \[\frac{1}{i}\] is equal to
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : i30 + i40 + i50 + i60
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Show that `(-1+ sqrt(3)i)^3` is a real number.