मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the value of (3+2i)(i6-i7)(1+i11) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`

बेरीज

उत्तर

i6 = (i2)3 = (– 1)3 = – 1

i7 = i6 × i = (i2)3i = (– 1)3i = – i

i11 = i10 × i = (i2)5i = (– 1)5i = – i

`∴(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`

`= (3 + 2/"i")(-1 - (-"i"))(1 +(-"i"))`

`= (3 + 2/"i")(-1 + "i")(1 - "i")`

= `(3 + 2/"i")(1 - "i")(1 - "i")`

= `(3 + (2"i")/"i"^2)(-1 + "i" + "i" - "i"^2)`

= `(3 + (2"i")/(-1))[-1 + 2"i" - (-1)]`

= (3 - 2i)(2i)

= 3(2i) - 2i(2i)

= 6i - 4i2

= 6i - 4(- 1)

= 6i + 4

= 4 + 6i

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Complex Numbers - Exercise 1.1 [पृष्ठ ६]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write 1 − i in polar form.


Write the argument of −i.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


The principal value of the amplitude of (1 + i) is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


The amplitude of \[\frac{1}{i}\] is equal to


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i116 


Evaluate the following : i403 


Evaluate the following : i30 + i40 + i50 + i60 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×