Advertisements
Advertisements
प्रश्न
Find the value of the following expression:
i + i2 + i3 + i4
उत्तर
\[ i + i^2 + i^3 + i^4 \]
\[ = i - 1 - i + 1 \left[ \because i^2 = - 1, i^3 = - i \text { and } i^4 = 1 \right]\]
\[ = 0 \]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The principal value of the amplitude of (1 + i) is
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
The argument of \[\frac{1 - i}{1 + i}\] is
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Evaluate the following : i35
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
Show that 1 + i10 + i20 + i30 is a real number
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
Show that `(-1+ sqrt(3)i)^3` is a real number.