मराठी

Write −1 + I √ 3 in Polar Form . - Mathematics

Advertisements
Advertisements

प्रश्न

Write −1 + \[\sqrt{3}\] in polar form .

उत्तर

\[\text{Let z }= - 1 + \sqrt{3}i . \text { Then } , \]

\[r = \left| z \right| = \sqrt{\left[ - 1 \right]^2 + \left[ \sqrt{3} \right]^2} = 2\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re (z)} \right|\]

\[ = \sqrt{3}\]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

\[\text { Since the point representing z lies in the second quadrant . Therefore, the argument of z is given by } \]

\[\theta = \pi - \alpha\]

\[ = \pi - \frac{\pi}{3}\]

\[ = \frac{2\pi}{3}\]

\[\text { So, the polar form is } r\left( \cos\theta + i\sin\theta \right)\]

\[ \therefore z = 2\left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.5 | Q 8 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Write (i25)3 in polar form.


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write 1 − i in polar form.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If z is a complex numberthen


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Evaluate the following : i35 


Evaluate the following : i93  


Evaluate the following : i–888 


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×