मराठी

Find the Value of the Following Expression:1+ I2 + I4 + I6 + I8 + ... + I20 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20

उत्तर

\[(vi) 1 + i^2 + i^4 + i^6 + i^8 + . . . + i^{20} \]

\[ \because i^2 = - 1, \]

\[ i^4 = 1, \]

\[ i^6 = - 1, \]

\[ i^8 = 1, \]

\[ i^{20} = 1\]

\[ \therefore 1 + i^2 + i^4 + i^6 + i^8 + . . . + i^{20} \]

\[ = \left[ 1 + \left( - 1 \right) \right] + \left[ 1 + \left( - 1 \right) \right] + \left[ 1 + \left( - 1 \right) \right] + . . . + \left[ 1 + \left( - 1 \right) \right] + 1\]

\[ = 5 \times \left[ 1 + \left( - 1 \right) \right] + 1 \left[ \text { As, there are 11 terms} \right]\]

\[ = 5 \times 0 + 1\]

\[ = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.1 | Q 3.6 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Solve the equation \[\left| z \right| = z + 1 + 2i\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write the argument of −i.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Show that `(-1 + sqrt(3)"i")^3` is a real number


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

The order relation is defined on the set of complex numbers.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×