मराठी

State True or False for the following: The order relation is defined on the set of complex numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

State True or False for the following:

The order relation is defined on the set of complex numbers.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

Comparison of two purely imaginary complex numbers is not possible. However, the two purely real complex numbers can be compared.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 26.(i) | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write (i25)3 in polar form.


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The value of \[(1 + i )^4 + (1 - i )^4\] is


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i35 


Evaluate the following : `1/"i"^58`


Evaluate the following : i30 + i40 + i50 + i60 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×