मराठी

Evaluate the Following: \[I^{30} + I^{40} + I^{60}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]

उत्तर

\[ i^{30} + i^{40} + i^{60} = i^{4 \times 7 + 2} + i^{4 \times 10} + i^{4 \times 15} \]

\[ = \left[ \left( i^4 \right)^7 \times i^2 \right] + \left[ \left( i^4 \right)^{10} \right] + \left[ \left( i^4 \right)^{15} \right]\]

\[ = - 1 + 1 + 1 \left( \because i^4 = 1, i^2 = - 1 \right)\]

\[ = 1 \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.1 | Q 1.7 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: (1 – i)4


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : `1/"i"^58`


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×