Advertisements
Advertisements
प्रश्न
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
उत्तर
We know that, \[i + i^2 + i^3 + i^4 = i - 1 - i + 1 = 0\]
\[\therefore i + i^2 + i^3 + . . . . + i^{1000} \]
\[ = \left( i + i^2 + i^3 + i^4 \right) + \left( i^5 + i^6 + i^7 + i^8 \right) + . . . + \left( i^{997} + i^{998} + i^{999} + i^{1000} \right)\]
\[ = \left( i + i^2 + i^3 + i^4 \right) + \left( i^4 i + i^4 i^2 + i^4 i^3 + i^4 i^4 \right) + . . . + \left[ \left( i^4 \right)^{249} i + \left( i^4 \right)^{249} i^2 + \left( i^4 \right)^{249} i^3 + \left( i^4 \right)^{249} i^4 \right]\]
\[ = \left( i + i^2 + i^3 + i^4 \right) + \left( i + i^2 + i^3 + i^4 \right) + . . . + \left( i + i^2 + i^3 + i^4 \right)\]
\[ = 0\]
Thus, the sum of the series
\[i + i^2 + i^3 + . . . .\] upto 1000 terms is 0.
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: (1 – i)4
Evaluate: `[i^18 + (1/i)^25]^3`
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write the argument of −i.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i403
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
Show that `(-1 + sqrt3 "i")^3` is a real number.