Advertisements
Advertisements
प्रश्न
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
उत्तर
\[ \frac{\left( 1 + i \right)x - 2i}{3 + i} + \frac{\left( 2 - 3i \right)y + i}{3 - i} = i\]
\[ \Rightarrow \frac{\left( 1 + i \right)\left( 3 - i \right)x - 2i\left( 3 - i \right) + \left( 2 - 3i \right)\left( 3 + i \right)y + i\left( 3 + i \right)}{\left( 3 + i \right)\left( 3 - i \right)} = i\]
\[ \Rightarrow \frac{3x - ix + 3ix - i^2 x - 6i + 2 i^2 + 6y + 2iy - 9iy - 3 i^2 y + 3i + i^2}{9 - i^2} = i\]
\[ \Rightarrow \frac{4x + 2ix - 3i + 9y - 7iy - 3}{10} = i\]
\[ \Rightarrow \left( 4x + 9y - 3 \right) + i\left( 2x - 3 - 7y \right) = 10i\]
\[\text { Comparing both the sides: } \]
\[4x + 9y - 3 = 0\]
\[ \Rightarrow 4x + 9y = 3 . . . . (1) \]
\[2x - 3 - 7y = 10\]
\[ \Rightarrow 2x - 7y = 13 . . . (2)\]
\[\text{Multiplying equation (2) by 2:} \]
\[4x - 14y = 26 . . . (3) \]
\[\text { Subtracting equation (3) from (1): } \]
\[ 4x + 9y = 3 \]
\[ 4x - 14y = 26 \]
\[ - + - \]
\[ 23y = - 23\]
\[ \therefore y = - 1\]
\[\text { Substituting the value of y in equation (1) }: \]
\[4x - 9 = 3\]
\[ \Rightarrow 4x = 12\]
\[ \Rightarrow x = 3\]
\[ \therefore x = 3 \text { and y } = - 1\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1}{i}\] is equal to
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i–888