मराठी

Find the Real Value of X and Y, If ( 1 + I ) X − 2 I 3 + I + ( 2 − 3 I ) Y + I 3 − I - Mathematics

Advertisements
Advertisements

प्रश्न

Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]

उत्तर

\[ \frac{\left( 1 + i \right)x - 2i}{3 + i} + \frac{\left( 2 - 3i \right)y + i}{3 - i} = i\]

\[ \Rightarrow \frac{\left( 1 + i \right)\left( 3 - i \right)x - 2i\left( 3 - i \right) + \left( 2 - 3i \right)\left( 3 + i \right)y + i\left( 3 + i \right)}{\left( 3 + i \right)\left( 3 - i \right)} = i\]

\[ \Rightarrow \frac{3x - ix + 3ix - i^2 x - 6i + 2 i^2 + 6y + 2iy - 9iy - 3 i^2 y + 3i + i^2}{9 - i^2} = i\]

\[ \Rightarrow \frac{4x + 2ix - 3i + 9y - 7iy - 3}{10} = i\]

\[ \Rightarrow \left( 4x + 9y - 3 \right) + i\left( 2x - 3 - 7y \right) = 10i\]

\[\text { Comparing both the sides: } \]

\[4x + 9y - 3 = 0\]

\[ \Rightarrow 4x + 9y = 3 . . . . (1) \]

\[2x - 3 - 7y = 10\]

\[ \Rightarrow 2x - 7y = 13 . . . (2)\]

\[\text{Multiplying equation (2) by 2:} \]

\[4x - 14y = 26 . . . (3) \]

\[\text { Subtracting equation (3) from (1): } \]

\[ 4x + 9y = 3 \]

\[ 4x - 14y = 26 \]

\[ - + - \]

\[ 23y = - 23\]

\[ \therefore y = - 1\]

\[\text { Substituting the value of y in equation (1) }: \]

\[4x - 9 = 3\]

\[ \Rightarrow 4x = 12\]

\[ \Rightarrow x = 3\]

\[ \therefore x = 3 \text { and y } = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 2.3 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the multiplicative inverse of the following complex number:

1 − i


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1}{i}\] is equal to


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i–888 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×