मराठी

Express the Following Complex in the Form R(Cos θ + I Sin θ): 1 + I Tan α - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α

उत्तर

\[\text{Let } z = 1 + i\tan \alpha \]

\[ \because \tan \alpha\text {  is periodic with period }π. \text { So, let us take } \]

\[\alpha \in [0,\frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]

\[Case I: \]

\[\text { When } \alpha \in [0, \frac{\pi}{2})\]

\[z = 1 + i\tan \alpha \]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \tan^2 \alpha}\]

\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]

\[ = \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \left| \tan \alpha \right|\]

\[ = \tan \alpha\]

\[ \Rightarrow \beta = \alpha \]

\[\text { As z lies in the first quadrant . Therefore}, \arg(z) = \beta = \alpha\]

\[\text { Thus, z in the polar form is given by } \]

\[z = \sec \alpha \left( \cos\alpha + i\sin \alpha \right)\]

\[\text{Case II }: \]

\[z = 1 + i \tan \alpha \]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \tan^2 \alpha}\]

\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]

\[ = - \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \left| \tan \alpha \right|\]

\[ = - \tan \alpha\]

\[ \Rightarrow \tan \beta = \tan \left( \pi - \alpha \right)\]

\[ \Rightarrow \beta = \pi - \alpha\]

\[\text { As, z lies in the fourth quadrant } . \]

\[ \therefore \arg(z) = - \beta = \alpha - \pi\]

\[\text { Thus, z in the polar form is given by } \]

\[z = - \sec \alpha \left\{ \cos\left( \alpha - \pi \right) + i\sin \left( \alpha - \pi \right) \right\} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.4 | Q 3.1 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate: `[i^18 + (1/i)^25]^3`


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write the argument of −i.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1}{i}\] is equal to


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Evaluate the following : i888 


Evaluate the following : i93  


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

The order relation is defined on the set of complex numbers.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×