Advertisements
Advertisements
प्रश्न
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
उत्तर
\[\text { Let z } = \frac{1 - i}{cos\frac{\pi}{3} + i sin\frac{\pi}{3}}\]
\[ = \frac{1 - i}{\frac{1}{2} + i\frac{\sqrt{3}}{2}}\]
\[ = \frac{2 - 2i}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]
\[ = \frac{2 - 2i - 2\sqrt{3}i + 2\sqrt{3} i^2}{1 + 3}\]
\[ = \frac{2 - 2\sqrt{3} - 2i(1 + \sqrt{3})}{4}\]
\[ = \frac{\left( 1 - \sqrt{3} \right) + i( - 1 - \sqrt{3})}{2}\]
\[ = \frac{\left( 1 - \sqrt{3} \right)}{2} + i\frac{( - 1 - \sqrt{3})}{2}\]
\[\text { Now,} z = \frac{\left( 1 - \sqrt{3} \right)}{2} + i\frac{( - 1 - \sqrt{3})}{2}\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1 - \sqrt{3}}{2} \right)^2 + \left( \frac{- 1 - \sqrt{3}}{2} \right)^2}\]
\[ = \sqrt{\left( \frac{1 + 3 - 2\sqrt{3}}{4} \right) + \left( \frac{1 + 3 + 2\sqrt{3}}{4} \right)}\]
\[ = \sqrt{\frac{8}{4}}\]
\[ = \sqrt{2}\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} .\text { Then }, \]
\[\tan\beta = \frac{\left| \frac{1 + \sqrt{3}}{2} \right|}{\left| \frac{1 - \sqrt{3}}{2} \right|} = \left| \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \right| = \left| \frac{\tan\frac{\pi}{4} + \tan\frac{\pi}{3}}{1 - \tan\frac{\pi}{4}\tan\frac{\pi}{3}} \right|\]
\[ \Rightarrow \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\pi}{3} \right) \right| = \left| \tan\frac{7\pi}{12} \right|\]
\[ \Rightarrow \beta = \frac{7\pi}{12}\]
\[\text { Clearly, z lies in the fourth quadrant . Therefore} , \arg\left( z \right) = - \frac{7\pi}{12}\]
\[\text { Hence, the polar form of z is } \]
\[\sqrt{2}\left( \cos\frac{7\pi}{12} - \sin\frac{7\pi}{12} \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The polar form of (i25)3 is
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i–888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).