Advertisements
Advertisements
प्रश्न
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
उत्तर
\[\frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]
\[ = \frac{(1 + cos\theta) + isin\theta}{(1 - cos\theta) - isin\theta} \times \frac{(1 - cos\theta) + isin\theta}{(1 - cos\theta) + isin\theta}\]
\[ = \frac{1 - \cos\theta + i\sin\theta + \cos\theta - \cos^2 \theta + i\cos\theta\sin\theta + i\sin\theta - i\sin\theta\cos\theta + i^2 \sin^2 \theta}{(1 - \cos\theta )^2 - i^2 \sin^2 \theta}\]
\[ = \frac{1 - \cos^2 \theta - \sin^2 \theta + 2i\sin\theta}{1 + \cos^2 \theta - 2i\cos\theta + \sin^2 \theta}\phantom{.....}...[ \because i^2 = - 1]\]
\[ = \frac{\sin^2 \theta - \sin^2 \theta + 2i\sin\theta}{2 - 2i\cos\theta} \phantom{.....}...[ \because \cos^2 \theta + \sin^2 \theta = 1]\]
\[ = \frac{i\sin\theta}{1 - \cos\theta}\]
\[ = \frac{\cancel{2}i\cancel{\sin\frac{\theta}{2}}\cos\frac{\theta}{2}}{\cancel{2}\cancel{\sin^2 \frac{\theta}{2}}}\]
\[ = i\cot\frac{\theta}{2}\]
Thus, \[\frac{1 + a}{1 - a} = i\cot\frac{\theta}{2}\].
APPEARS IN
संबंधित प्रश्न
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The polar form of (i25)3 is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i35
Evaluate the following : i888
Evaluate the following : i–888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.