मराठी

If ( 1 − I 1 + I ) 100 = a + I B Find (A, B). - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).

उत्तर

\[\frac{1 - i}{1 + i} = \frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]

\[ = \frac{\left( 1 - i \right)^2}{1^2 - i^2}\]

\[ = \frac{1^2 + i^2 - 2i}{1 + 1} [ \because i^2 = - 1] \]

\[ = \frac{1 - 1 - 2i}{2}\]

\[ = \frac{- 2i}{2}\]

\[ = - i . . . . (1)\]

It is given that,

\[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\]

\[ \Rightarrow ( - i )^{100} = a + ib [\text { From } (1)]\]

\[ \Rightarrow i^{4 \times 25} = a + ib\]

\[ \Rightarrow 1 + 0i = a + ib [ \because i^4 = 1]\]

\[ \Rightarrow a = 1 \text { and } b = 0\]

Thus, (ab) = (1, 0).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 14 | पृष्ठ ३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Write 1 − i in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The principal value of the amplitude of (1 + i) is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i888 


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×