Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
उत्तर
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9 = \left( i^{4 \times 10 + 1} + \frac{1}{i^{4 \times 64 + 1}} \right)^9 \]
\[ = \left[ \left( i^4 \right)^{10} \times i + \frac{1}{\left( i^4 \right)^{64} \times i} \right]^9 \]
\[ = \left( i + \frac{1}{i} \right)^9 \left(\because i^4 = 1\right)\]
\[= \left( i + \frac{i}{i^2} \right)^9 \]
\[ = \left( i - i \right)^9 \left( \because i^2 = - 1 \right)\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: (1 – i)4
Evaluate the following:
i457
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Write (i25)3 in polar form.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i888
Evaluate the following : i93
Evaluate the following : i116
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
2 is not a complex number.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
Show that `(-1 + sqrt3 "i")^3` is a real number.