मराठी

Evaluate the Following:\[\Left( I^{41} + \Frac{1}{I^{257}} \Right)^9\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]

उत्तर

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9 = \left( i^{4 \times 10 + 1} + \frac{1}{i^{4 \times 64 + 1}} \right)^9 \]

\[ = \left[ \left( i^4 \right)^{10} \times i + \frac{1}{\left( i^4 \right)^{64} \times i} \right]^9 \]

\[ = \left( i + \frac{1}{i} \right)^9 \left(\because i^4 = 1\right)\]

\[= \left( i + \frac{i}{i^2} \right)^9 \]

\[ = \left( i - i \right)^9 \left( \because i^2 = - 1 \right)\]

\[ = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.1 | Q 1.5 | पृष्ठ ३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: (1 – i)4


Evaluate the following:

i457


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Write (i25)3 in polar form.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : i116 


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

2 is not a complex number.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×