Advertisements
Advertisements
प्रश्न
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
उत्तर
\[\left( \frac{1 + i}{1 - i} \right) = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}\]
\[ = \frac{\left( 1 + i \right)^2}{1^2 - i^2}\]
\[ = \frac{1^2 + i^2 + 2i}{1 + 1} [ \because i^2 = - 1]\]
\[ = \frac{1 - 1 + 2i}{2}\]
\[ = \frac{2i}{2}\]
\[ = i . . . . (1)\]
Also,
\[\left( \frac{1 - i}{1 + i} \right) = \frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ = \frac{\left( 1 - i \right)^2}{1^2 - i^2}\]
\[ = \frac{1^2 + i^2 - 2i}{1 + 1} [ \because i^2 = - 1]\]
\[ = \frac{1 - 1 - 2i}{2}\]
\[ = \frac{- 2i}{2}\]
\[ = - i . . . . (2)\]
It is given that,
\[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\]
\[ \Rightarrow (i )^3 - ( - i )^3 = x + iy [\text {From (1) and (2)}]\]
\[ \Rightarrow i^3 + i^3 = x + iy\]
\[ \Rightarrow 2 i^3 = x + iy\]
\[ \Rightarrow 0 - 2i = x + iy [ \because i^3 = - i]\]
\[ \Rightarrow x = 0 \text { and } y = - 2\]
Thus, (x, y) = (0, −2).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if abi = 3a − b + 12i
Evaluate the following : i116
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8