Advertisements
Advertisements
प्रश्न
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
पर्याय
0
1
−1
none of these
उत्तर
none of these
\[\left( x + iy \right)^\frac{1}{3} = a + ib\]
\[\text { Cubing on both the sides, we get }: \]
\[x + iy = \left( a + ib \right)^3 \]
\[ \Rightarrow x + iy = a^3 + \left( ib \right)^3 + 3 a^2 bi + 3a \left( ib \right)^2 \]
\[ \Rightarrow x + iy = a^3 + i^3 b^3 + 3 a^2 ib + 3 i^2 a b^2 \]
\[ \Rightarrow x + iy = a^3 - i b^3 + 3 a^2 ib - 3a b^2 ( \because i^2 = - 1, i^3 = - i)\]
\[ \Rightarrow x + iy = a^3 - 3a b^2 + i\left( - b^3 + 3 a^2 b \right)\]
\[ \therefore x = a^3 - 3a b^2 \text { and }y = 3 a^2 b - b^3 \]
\[or , \frac{x}{a} = a^2 - 3 b^2\text { and } \frac{y}{b} = 3 a^2 - b^2 \]
\[ \Rightarrow \frac{x}{a} + \frac{y}{b} = a^2 - 3 b^2 + 3 a^2 - b^2 \]
\[ \Rightarrow \frac{x}{a} + \frac{y}{b} = 4 a^2 - 4 b^2\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
(ii) i528
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Write (i25)3 in polar form.
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The amplitude of \[\frac{1}{i}\] is equal to
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : `1/"i"^58`
Show that 1 + i10 + i20 + i30 is a real number
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+sqrt3i)^3` is a real number.