मराठी

Evaluate the Following: X 4 + 4 X 3 + 6 X 2 + 4 X + 9 , When X = − 1 + I √ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]

उत्तर

\[ x = - 1 + \sqrt{2}i\]

\[ \Rightarrow x^2 = \left( - 1 + \sqrt{2}i \right)^2 \]

\[ = 1 + 2 i^2 - 2\sqrt{2}i\]

\[ = - 1 - 2\sqrt{2}i\]

\[ \Rightarrow x^3 = \left( - 1 - 2\sqrt{2}i \right) \times \left( - 1 + \sqrt{2}i \right)\]

\[ = 1 - \sqrt{2}i + 2\sqrt{2}i - 4 i^2 \]

\[ = 5 + \sqrt{2}i\]

\[ \Rightarrow x^4 = \left( - 1 - 2\sqrt{2}i \right)^2 \]

\[ = 1 + 8 i^2 + 4\sqrt{2}i\]

\[ = - 7 + 4\sqrt{2}i\]

\[ \Rightarrow x^4 + 4 x^3 + 6 x^2 + 4x + 9 = - 7 + 4\sqrt{2}i + 4\left( 5 + \sqrt{2}i \right) + 6\left( - 1 - 2\sqrt{2}i \right) + 4\left( - 1 + \sqrt{2}i \right) + 9\]

\[ = - 7 + 4\sqrt{2}i + 20 + 4\sqrt{2}i - 6 - 12\sqrt{2}i - 4 + 4\sqrt{2}i + 9\]

\[ = 12\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 16.3 | पृष्ठ ३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the argument of −i.


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1}{i}\] is equal to


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Which of the following is correct for any two complex numbers z1 and z2?

 


Find a and b if `1/("a" + "ib")` = 3 – 2i


Find a and b if (a + ib) (1 + i) = 2 + i


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i–888 


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

The order relation is defined on the set of complex numbers.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×