Advertisements
Advertisements
प्रश्न
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
पर्याय
0
\[\frac{1}{2}\]
\[\cot\frac{\theta}{2}\]
\[\frac{1}{2}\cot\frac{\theta}{2}\]
उत्तर
\[\frac{1}{2}\]
\[z = \frac{1}{1 - \cos\theta - i\sin\theta}\]
\[z = \frac{1}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}\]
\[ \Rightarrow z=\frac{1 - \cos\theta + i\sin\theta}{\left( 1 - \cos\theta \right)^2 - \left( i\sin\theta \right)^2}\]
\[ \Rightarrow z=\frac{1 - \cos\theta + i\sin\theta}{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]
\[ \Rightarrow z= \frac{1 - \cos\theta + i\sin\theta}{1 + 1 - 2\cos\theta}$\]
\[ \Rightarrow z=\frac{1 - \cos\theta + i\sin\theta}{2(1 - \cos\theta)}\]
\[ \Rightarrow \text { Re }(z)=\frac{\left( 1 - \cos\theta \right)}{2\left( 1 - \cos\theta \right)}=\frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Write the argument of −i.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
The principal value of the amplitude of (1 + i) is
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.