Advertisements
Advertisements
प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
उत्तर
(1 – i) – (-1 + i6) = (1 – i) + (1 – 6i)
= 1 – i + 1 – 6i
= 2 – 7i
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The principal value of the amplitude of (1 + i) is
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if abi = 3a − b + 12i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i116
Show that 1 + i10 + i20 + i30 is a real number
Show that `(-1 + sqrt3 "i")^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.