Advertisements
Advertisements
प्रश्न
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
उत्तर
\[\pi < \theta < 2\pi\]
\[ \frac{\pi}{2} < \frac{\theta}{2} < \pi \left( \text { Dividing by } 2 \right)\]
\[z = 1 + \cos\theta + i sin\theta\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 + \cos\theta \right)^2 + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + \cos^2 \theta + 2\cos\theta + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + 1 + 2\cos\theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{2\left( 1 + \cos\theta \right)}\]
\[ \Rightarrow \left| z \right| = \sqrt{2 \times 2 \cos^2 \frac{\theta}{2}}\]
\[ \Rightarrow \left| z \right| = 2\sqrt{\cos^2 \frac{\theta}{2}}\]
\[ \Rightarrow \left| z \right| = - 2\cos\frac{\theta}{2} \left[ \text { Since } \frac{\pi}{2} < \frac{\theta}{2} < \pi , \cos\frac{\theta}{2} \text { is negative } \right]\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: (1 – i)4
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
(ii) i528
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i30 + i80 + i120
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The argument of \[\frac{1 - i}{1 + i}\] is
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Evaluate the following : i–888
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Show that `(-1 + sqrt3 "i")^3` is a real number.