मराठी

A Real Value of X Satisfies the Equation 3 − 4 I X 3 + 4 I X = a − I B ( a , B ∈ R ) , I F a 2 + B 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]

पर्याय

  • 1

  • -1

  • 2

  • -2

MCQ

उत्तर

\[a - ib = \frac{3 - 4ix}{3 + 4ix}\]

\[ = \frac{3 - 4ix}{3 + 4ix} \times \frac{3 - 4ix}{3 - 4ix}\]

\[ = \frac{9 + 16 x^2 i^2 - 24xi}{9 - 16 x^2 i^2}\]

\[ = \frac{\left( 9 - 16 x^2 \right) - i\left( 24x \right)}{9 + 16 x^2}\]

\[ \Rightarrow \left| a - ib \right|^2 = \left| \frac{\left( 9 - 16 x^2 \right) - i\left( 24x \right)}{9 + 16 x^2} \right|^2 \]

\[ \Rightarrow a^2 + b^2 = \frac{\left( 9 - 16 x^2 \right)^2 + \left( 24x \right)^2}{\left( 9 + 16 x^2 \right)^2}\]

\[ = \frac{81 + 256 x^4 - 288 x^2 + 576 x^2}{\left( 9 + 16 x^2 \right)^2}\]

\[ = \frac{81 + 256 x^4 + 288 x^2}{\left( 9 + 16 x^2 \right)^2}\]

\[ = \frac{\left( 9 + 16 x^2 \right)^2}{\left( 9 + 16 x^2 \right)^2}\]

\[ = 1\]

Hence, the correct option is (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 39 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i–888 


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


State True or False for the following:

The order relation is defined on the set of complex numbers.


State True or False for the following:

2 is not a complex number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×