मराठी

( √ − 2 ) ( √ − 3 ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to

पर्याय

  • \[\sqrt{6}\]

  • \[- \sqrt{6}\]

  • \[i\sqrt{6}\]

  • none of these.

MCQ

उत्तर

\[- \sqrt{6}\]

\[\sqrt{- 2} \times \sqrt{- 3} \]

\[ = \sqrt{2} \times \sqrt{3} \times \sqrt{- 1} \times \sqrt{- 1}\]

\[ = \sqrt{6} \times i \times i \]

\[ = \sqrt{6} \times i^2 \]

\[ = - \sqrt{6} \left[ \because i^2 = - 1 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 17 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Write 1 − i in polar form.


Write the argument of −i.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Show that `(-1 + sqrt(3)"i")^3` is a real number


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i35 


Evaluate the following : `1/"i"^58`


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×