Advertisements
Advertisements
प्रश्न
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
उत्तर
(2 + 3i)(2 – 3i) = 4 – 9i2
= 4 – 9(– 1) ...[∵ i2 = – 1]
= 4 + 9
= 13
∴ (2 + 3i)(2 – 3i) = 13 + 0i
∴ a = 13 and b = 0
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write the argument of −i.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The amplitude of \[\frac{1}{i}\] is equal to
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i35
Evaluate the following : i403
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`