Advertisements
Advertisements
प्रश्न
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
उत्तर
i8 = (i2)4 = (–1)4 = 1
i9 = i8 × i = (i2)4i = (– 1)4i = i
i11 = i10 × i = (i2)5i = (– 1)5i = – i
i10 = (i2)5 = (– 1)5 = – 1
∴ `(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2) = (4(1) - 3"i" + 3)/(3(-"i") - 4(-1) - 2)`
= `(4 - 3"i" + 3)/(-3"i" + 4 - 2)`
= `(7 - 3"i")/(2 - 3"i")`
= `(7 - 3"i")/(2 - 3"i") xx (2 + 3"i")/(2 + 3"i")`
= `(14 + 21"i" - 6"i" - 9"i"^2)/(4 - 9"i"^2)`
= `(14 + 15"i" + 9)/(4 + 9)` ...[∵ i2 = – 1]
= `(23 + 15"i")/13`
= `23/13 + 15/13"i"`
This is of the form a + bi, where a = `23/13` and b = `15/13`.
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate the following:
\[\frac{1}{i^{58}}\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
The principal value of the amplitude of (1 + i) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The argument of \[\frac{1 - i}{1 + i}\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State True or False for the following:
The order relation is defined on the set of complex numbers.