Advertisements
Advertisements
प्रश्न
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
उत्तर
\[\frac{i^{4n + 1} - i^{4n - 1}}{2}\]
\[ = \frac{i - \frac{1}{i}}{2} \left( \because i^{4n} = 1, i^{- 1} = \frac{1}{i} \right)\]
\[ = \frac{\frac{i^2 - 1}{i}}{2}\]
\[ = \frac{i^2 - 1}{2i}\]
\[ = \frac{- 1 - 1}{2i}\]
\[ = \frac{- 2}{- 2i} \]
\[ = \frac{- 1}{i}\]
\[ = \frac{- i}{i^2} \left( \because i^2 = - 1 \right)\]
\[ = \frac{- i}{- 1}\]
\[ = i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Evaluate: `[i^18 + (1/i)^25]^3`
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The amplitude of \[\frac{1}{i}\] is equal to
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if abi = 3a − b + 12i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State True or False for the following:
The order relation is defined on the set of complex numbers.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8