मराठी

If N is Any Positive Integer, Write the Value of I 4 N + 1 − I 4 N − 1 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].

उत्तर

\[\frac{i^{4n + 1} - i^{4n - 1}}{2}\]

\[ = \frac{i - \frac{1}{i}}{2} \left( \because i^{4n} = 1, i^{- 1} = \frac{1}{i} \right)\]

\[ = \frac{\frac{i^2 - 1}{i}}{2}\]

\[ = \frac{i^2 - 1}{2i}\]

\[ = \frac{- 1 - 1}{2i}\]

\[ = \frac{- 2}{- 2i} \]

\[ = \frac{- 1}{i}\]

\[ = \frac{- i}{i^2} \left( \because i^2 = - 1 \right)\]

\[ = \frac{- i}{- 1}\]

\[ = i\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.5 | Q 5 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate: `[i^18 + (1/i)^25]^3`


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the multiplicative inverse of the following complex number:

1 − i


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The amplitude of \[\frac{1}{i}\] is equal to


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if abi = 3a − b + 12i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Evaluate the following : i30 + i40 + i50 + i60 


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State True or False for the following:

The order relation is defined on the set of complex numbers.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×