Advertisements
Advertisements
प्रश्न
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
उत्तर
We know that,
\[z = \left| z \right|\left\{ \cos\left[ \arg(z) \right] + i\sin\left[ \arg(z) \right] \right\}\]
\[ \Rightarrow z = 4\left( \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} \right)\]
\[ = 4\left( - \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \right)\]
\[ = 4\left( - \frac{\sqrt{3}}{2} + \frac{1}{2}i \right)\]
\[ = - 2\sqrt{3} + 2i\]
Thus,
\[z = - 2\sqrt{3} + 2i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The polar form of (i25)3 is
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State True or False for the following:
The order relation is defined on the set of complex numbers.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`