मराठी

Find Z, If | Z | = 4 and Arg ( Z ) = 5 π 6 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]

उत्तर

We know that,

\[z = \left| z \right|\left\{ \cos\left[ \arg(z) \right] + i\sin\left[ \arg(z) \right] \right\}\]

\[ \Rightarrow z = 4\left( \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} \right)\]

\[ = 4\left( - \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \right)\]

\[ = 4\left( - \frac{\sqrt{3}}{2} + \frac{1}{2}i \right)\]

\[ = - 2\sqrt{3} + 2i\]

Thus, 

\[z = - 2\sqrt{3} + 2i\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.5 | Q 12 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


State True or False for the following:

The order relation is defined on the set of complex numbers.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×