Advertisements
Advertisements
प्रश्न
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
उत्तर
\[3 i^3 - 2a i^2 + (1 - a)i + 5\]
\[ = - 3i + 2a + (1 - a)i + 5\]
\[ = (2a + 5) + i(1 - a - 3)\]
\[ = (2a + 5) + i( - 2 - a)\]
Since,
\[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
\[\therefore Im\left[ 3 i^3 - 2a i^2 + (1 - a)i + 5 \right] = 0\]
\[ \Rightarrow - 2 - a = 0\]
\[ \Rightarrow a = - 2\]
Hence, the real value of a for which
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Write (i25)3 in polar form.
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The principal value of the amplitude of (1 + i) is
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if (a + ib) (1 + i) = 2 + i
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : `1/"i"^58`
Evaluate the following : i30 + i40 + i50 + i60
Show that `(-1+sqrt3i)^3` is a real number.