मराठी

Find the Real Value of a for Which 3 I 3 − 2 a I 2 + ( 1 − a ) I + 5 is Real. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.

उत्तर

\[3 i^3 - 2a i^2 + (1 - a)i + 5\]

\[ = - 3i + 2a + (1 - a)i + 5\]

\[ = (2a + 5) + i(1 - a - 3)\]

\[ = (2a + 5) + i( - 2 - a)\]

Since, 

\[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.

\[\therefore Im\left[ 3 i^3 - 2a i^2 + (1 - a)i + 5 \right] = 0\]

\[ \Rightarrow - 2 - a = 0\]

\[ \Rightarrow a = - 2\]

Hence, the real value of for which 

\[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real is −2.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.5 | Q 22 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Write (i25)3 in polar form.


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The principal value of the amplitude of (1 + i) is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


If z is a complex numberthen


Which of the following is correct for any two complex numbers z1 and z2?

 


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if (a + ib) (1 + i) = 2 + i


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : `1/"i"^58`


Evaluate the following : i30 + i40 + i50 + i60 


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×