Advertisements
Advertisements
प्रश्न
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
पर्याय
\[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{4}\]
\[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{6}\]
\[\left| z \right| = \frac{\sqrt{3}}{2},\text { arg }(z) = \frac{5\pi}{24}\]
\[\left| z \right| = \frac{\sqrt{3}}{2}, \text { arg }(z) = \tan^{- 1} \frac{1}{\sqrt{2}}\]
उत्तर
\[z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{6}\]
\[ \Rightarrow z = \frac{1}{\sqrt{2}} + \frac{1}{2}i\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{4}}\]
\[ \Rightarrow \left| z \right| = \sqrt{\frac{1}{2} + \frac{1}{4}}\]
\[ \Rightarrow \left| z \right| = \sqrt{\frac{3}{4}}\]
\[ \Rightarrow \left| z \right| = \frac{\sqrt{3}}{2}\]
\[\tan \alpha = \left| \frac{\text { Im }(z)}{\text { Re }(z)} \right|\]
\[ = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]
\[\text { Since, the point z lies in the first quadrant } . \]
\[\text { Therefore, } \arg(z) = \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
(ii) i528
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the argument of −i.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1}{i}\] is equal to
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i888
Evaluate the following : i403
Evaluate the following : i30 + i40 + i50 + i60
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State True or False for the following:
2 is not a complex number.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Show that `(-1+ sqrt(3)i)^3` is a real number.