मराठी

If Z = Cos π 4 + I Sin π 6 , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then

पर्याय

  • \[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{4}\]

  • \[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{6}\]

  • \[\left| z \right| = \frac{\sqrt{3}}{2},\text {  arg }(z) = \frac{5\pi}{24}\]

  • \[\left| z \right| = \frac{\sqrt{3}}{2}, \text { arg }(z) = \tan^{- 1} \frac{1}{\sqrt{2}}\]

MCQ

उत्तर

\[z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{6}\]

\[ \Rightarrow z = \frac{1}{\sqrt{2}} + \frac{1}{2}i\]

\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{4}}\]

\[ \Rightarrow \left| z \right| = \sqrt{\frac{1}{2} + \frac{1}{4}}\]

\[ \Rightarrow \left| z \right| = \sqrt{\frac{3}{4}}\]

\[ \Rightarrow \left| z \right| = \frac{\sqrt{3}}{2}\]

\[\tan \alpha = \left| \frac{\text { Im }(z)}{\text { Re }(z)} \right|\]

\[ = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]

\[\text { Since, the point z lies in the first quadrant } . \]

\[\text { Therefore, } \arg(z) = \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 5 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

(ii) i528


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write the argument of −i.


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1}{i}\] is equal to


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i888 


Evaluate the following : i403 


Evaluate the following : i30 + i40 + i50 + i60 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×