मराठी

The Complex Number Z Which Satisfies the Condition ∣ ∣ ∣ I + Z I − Z ∣ ∣ ∣ = 1 Lies on - Mathematics

Advertisements
Advertisements

प्रश्न

The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on

पर्याय

  • circle x2 + y2 = 1

  • the x−axis

  • the y−axis

  • the line x + y = 1

MCQ

उत्तर

\[\left| \frac{i + z}{i - z} \right| = 1\]

\[ \Rightarrow \left| \frac{i + z}{i - z} \right|^2 = 1^2 \]

\[ \Rightarrow \left( \frac{i + z}{i - z} \right) \bar{\left( \frac{i + z}{i - z} \right)} = 1\]

\[ \Rightarrow \left( \frac{i + z}{i - z} \right)\left( \frac{- i + \bar{z}}{- i - \bar{z}} \right) = 1\]

\[ \Rightarrow \left( \frac{- i^2 - zi + \bar{z}i + z \bar{z}}{- i^2 + zi - \bar{z}i + z \bar{z}} \right) = 1\]

\[ \Rightarrow - i^2 - zi + \bar{z}i + z \bar{z} = - i^2 + zi - \bar{z}i + z \bar{z}\]

\[ \Rightarrow - zi + \bar{z}i = zi - \bar{z}i\]

\[ \Rightarrow \bar{z}i + \bar{z}i = zi + zi\]

\[ \Rightarrow 2 \bar{z}i = 2zi\]

\[ \Rightarrow \bar{z} = z\]

\[ \Rightarrow \text { z is purely real }\]

Hence, the correct option is (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 40 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


The value of \[(1 + i )^4 + (1 - i )^4\] is


If z is a complex numberthen


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


State True or False for the following:

The order relation is defined on the set of complex numbers.


State True or False for the following:

2 is not a complex number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×