Advertisements
Advertisements
प्रश्न
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
पर्याय
circle x2 + y2 = 1
the x−axis
the y−axis
the line x + y = 1
उत्तर
\[\left| \frac{i + z}{i - z} \right| = 1\]
\[ \Rightarrow \left| \frac{i + z}{i - z} \right|^2 = 1^2 \]
\[ \Rightarrow \left( \frac{i + z}{i - z} \right) \bar{\left( \frac{i + z}{i - z} \right)} = 1\]
\[ \Rightarrow \left( \frac{i + z}{i - z} \right)\left( \frac{- i + \bar{z}}{- i - \bar{z}} \right) = 1\]
\[ \Rightarrow \left( \frac{- i^2 - zi + \bar{z}i + z \bar{z}}{- i^2 + zi - \bar{z}i + z \bar{z}} \right) = 1\]
\[ \Rightarrow - i^2 - zi + \bar{z}i + z \bar{z} = - i^2 + zi - \bar{z}i + z \bar{z}\]
\[ \Rightarrow - zi + \bar{z}i = zi - \bar{z}i\]
\[ \Rightarrow \bar{z}i + \bar{z}i = zi + zi\]
\[ \Rightarrow 2 \bar{z}i = 2zi\]
\[ \Rightarrow \bar{z} = z\]
\[ \Rightarrow \text { z is purely real }\]
Hence, the correct option is (b).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
The value of \[(1 + i )^4 + (1 - i )^4\] is
If z is a complex number, then
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
Show that `(-1+sqrt3i)^3` is a real number.