Advertisements
Advertisements
प्रश्न
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
उत्तर
Let z = x + iy, z1 = x1 + iy1 and z2 = x2 + iy2 .
Then `z + barz = 2|z - 1|`
⇒ (x + iy) + (x – iy) = `2|x - 1 + "i"y|`
⇒ 2x = 1 + y2 .......(1)
Since z1 and z2 both satisfy (1), we have
`2x_1 = 1 + y_1^2 .....` and `2x_2 = 1 + y_2^2`
⇒ `2(x_1 - x_2) = (y_1 + y_2)(y_1 - y_2)`
⇒ 2 = `(y_1 + y_2) ((y_1 - y_2)/(x_1 - x_2))` ......(2)
Again `z_1 - "z"_2 = (x_1 - x_2) + "i"(y_"i" - y_2)`
Therefore, tanθ = `(y_1 - y_2)/(x_1 - x_2)`, where θ = arg`("z"_1 - "z"_2)`
⇒ `tan pi/4 = (y_1 - y_2)/(x_1 - x_2)` ......`("Since" theta = pi/4)`
i.e., 1 = `(y_1 - y_2)/(x_1 - x_2)`
From (2), We get 2 = y1 + y2 i.e., `"Im" ("z"_1 + "z"_2)` = 2
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate the following:
(ii) i528
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The value of \[(1 + i )^4 + (1 - i )^4\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if abi = 3a − b + 12i
Evaluate the following : i–888
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.