Advertisements
Advertisements
प्रश्न
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
उत्तर
Let \[z = x + iy\].
Then,
\[\left| z \right| = \sqrt{x^2 + y^2}\]
\[\therefore z^2 + \left| z \right|^2 = 0\]
\[ \Rightarrow \left( x + iy \right)^2 + \left( \sqrt{x^2 + y^2} \right)^2 = 0\]
\[ \Rightarrow x^2 + i^2 y^2 + 2ixy + x^2 + y^2 = 0\]
\[ \Rightarrow x^2 - y^2 + 2ixy + x^2 + y^2 = 0\]
\[ \Rightarrow 2 x^2 + 2ixy = 0\]
\[ \Rightarrow 2x(x + iy) = 0\]
\[ \Rightarrow x = 0 \text { or } x + iy = 0\]
\[ \Rightarrow x = 0 \text { or } z = 0\]
For
\[x = 0, z = 0 + iy\]
Thus, there are infinitely many solutions of the form
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the argument of −i.
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.