Advertisements
Advertisements
प्रश्न
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
उत्तर
\[\left| z_1 + z_2 + z_3 \right| = \left| \frac{z_1 \bar{{z_1}}}{\bar{{z_1}}} + \frac{z_2 \bar{{z_2}}}{\bar{{z_2}}} + \frac{z_3 \bar{{z_3}}}{\bar{{z_3}}} \right|\]
\[ = \left| \frac{\left| z_1 \right|^2}{\bar{{z_1}}} + \frac{\left| z_2 \right|^2}{\bar{{z_2}}} + \frac{\left| z_3 \right|^2}{\bar{{z_3}}} \right|\]
\[ = \left| \frac{1}{\bar{{z_1}}} + \frac{1}{\bar{{z_2}}} + \frac{1}{\bar{{z_3}}} \right| [ \because \left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = 1]\]
\[ = \bar{\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right|}\]
\[ = 1 \left[ \because \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1 \right]\]
Thus, the value of \[\left| z_1 + z_2 + z_3 \right|\] is 1.
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write 1 − i in polar form.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
Evaluate the following : i116
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
2 is not a complex number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8