मराठी

The Argument of 1 − I √ 3 1 + I √ 3 is - Mathematics

Advertisements
Advertisements

प्रश्न

The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is

पर्याय

  •  60°

  • 120°

  • 210°

  • 240°

MCQ

उत्तर

240°

\[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\]

\[\text { Rationalising the denominator,} \]

\[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]

\[ = \frac{1 + 3 i^2 - 2\sqrt{3} i}{1 - 3 i^2}\]

\[ = \frac{- 2 - 2\sqrt{3} i}{4} \left( \because i^2 = - 1 \right)\]

\[ = \frac{- 1}{2} - i\frac{\sqrt{3}}{2}\]

\[\tan \alpha = \left| \frac{Im (z)}{Re (z)} \right|\]

\[\text { Then,} \tan \alpha = \left| \frac{\frac{- \sqrt{3}}{2}}{\frac{- 1}{2}} \right|\]

\[ = \sqrt{3} \]

\[ \Rightarrow \alpha = 60°\]

\[\text { Since the points } \left( \frac{- 1}{2}, \frac{- \sqrt{3}}{2} \right) \text { lie in the third quadrant, the argument is given by}: \]

\[\theta = 180° + 60°\]

\[ = 240°\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 18 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

(ii) i528


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write −1 + \[\sqrt{3}\] in polar form .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


The polar form of (i25)3 is


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


If z is a complex numberthen


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i116 


Evaluate the following : `1/"i"^58`


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×