Advertisements
Advertisements
प्रश्न
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
उत्तर
\[\frac{\left( 1 + i \right)^m}{\left( 1 - i \right)^{m - 2}}\]
\[ = \frac{\left( 1 + i \right)^m}{\left( 1 - i \right)^m} \times \left( 1 - i \right)^2 \]
\[ = \left( \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i} \right)^m \times \left( 1 + i^2 - 2i \right)\]
\[ = \left( \frac{1 + i^2 + 2i}{1 - i^2} \right)^m \times \left( 1 - 1 - 2i \right)\]
\[ = \left( \frac{1 - 1 + 2i}{1 + 1} \right)^m \times \left( - 2i \right)\]
\[ = - 2i\left( i^m \right)\]
\[ = - 2 \left( i \right)^{m + 1} \]
\[\text { For this to be real, the smallest positive value of m will be }1 . \]
\[\text{Thus}, i^{1 + 1} = i^2 = - 1,\text { which is real } .\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write the argument of −i.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The value of \[(1 + i )^4 + (1 - i )^4\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
If z is a complex number, then
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i35
Evaluate the following : i116
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
Show that `(-1 + sqrt3 "i")^3` is a real number.