Advertisements
Advertisements
प्रश्न
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
उत्तर
\[\frac{\left( 1 + i \right)^m}{\left( 1 - i \right)^{m - 2}}\]
\[ = \frac{\left( 1 + i \right)^m}{\left( 1 - i \right)^m} \times \left( 1 - i \right)^2 \]
\[ = \left( \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i} \right)^m \times \left( 1 + i^2 - 2i \right)\]
\[ = \left( \frac{1 + i^2 + 2i}{1 - i^2} \right)^m \times \left( 1 - 1 - 2i \right)\]
\[ = \left( \frac{1 - 1 + 2i}{1 + 1} \right)^m \times \left( - 2i \right)\]
\[ = - 2i\left( i^m \right)\]
\[ = - 2 \left( i \right)^{m + 1} \]
\[\text { For this to be real, the smallest positive value of m will be }1 . \]
\[\text{Thus}, i^{1 + 1} = i^2 = - 1,\text { which is real } .\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i)4
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The polar form of (i25)3 is
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i93
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : i30 + i40 + i50 + i60
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.