हिंदी

If the Complex Number Z = X + I Y Satisfies the Condition | Z + 1 | = 1 , Then Z Lies on - Mathematics

Advertisements
Advertisements

प्रश्न

If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on

विकल्प

  • x−axis

  • circle with centre (−1, 0) and radius 1

  • y−axis

  • none of these

MCQ

उत्तर

\[\left| z + 1 \right| = 1\]

\[ \Rightarrow \left| z + 1 \right|^2 = 1^2 \]

\[ \Rightarrow \left( z + 1 \right) \bar{\left( z + 1 \right)} = 1\]

\[ \Rightarrow \left( z + 1 \right)\left( \bar{z} + 1 \right) = 1\]

\[ \Rightarrow z \bar{z} + z + \bar{z} + 1 = 1\]

\[ \Rightarrow z \bar{z} + z + \bar{z} = 0\]

\[\text { Since }, z = x + iy\]

\[ \therefore z \bar{z} + z + \bar{z} = 0\]

\[ \Rightarrow \left( x + iy \right)\left( x - iy \right) + x + iy + x - iy = 0\]

\[ \Rightarrow x^2 + y^2 + 2x = 0\]

\[ \Rightarrow \left( x + 1 \right)^2 + \left( y - 0 \right)^2 = 1^2 \]

\[\text { which is the equation of a circle with centre } ( - 1, 0) \text { and radius }1\]

Hence, the correct option is (b).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 43 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

(ii) i528


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


The value of \[(1 + i )^4 + (1 - i )^4\] is


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i888 


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×