Advertisements
Advertisements
प्रश्न
Find a and b if abi = 3a − b + 12i
उत्तर
abi = 3a – b + 12i
0 + abi = (3a – b) + 12i
Equating real and imaginary parts, we get
3a – b = 0
∴ 3a = b ...(i)
and ab = 12
∴ b = `12/"a"` ...(ii)
Substituting b = `12/"a"` in (i), we get
3a = `12/"a"`
∴ 3a2 = 12
∴ a2 = 4
∴ a = ± 2
When a = 2, b = `12/"a" = 12/2` = 6
When a = – 2, b = `12/"a" = 12/(-2)` = – 6
∴ a = 2 and b = 6 or a = – 2 and b = – 6
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Evaluate the following:
(ii) i528
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The argument of \[\frac{1 - i}{1 + i}\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.