हिंदी

Write the Value of Arg ( Z ) + Arg ( ¯ Z ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].

उत्तर

Let z be a complex number with argument θ.
Then,

\[z = r e^{i\theta} \]

\[ \Rightarrow \bar{z} = \bar{{r e^{i\theta}}} = r e^{- i\theta}\]

⇒ argument of \[\bar{z}\] is −θ.

Thus, 

\[\arg\left( z \right) + \arg\left( \bar{z} \right) = 0\].

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.5 | Q 17 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate the following:

i457


Evaluate the following:

(ii) i528


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Write (i25)3 in polar form.


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write 1 − i in polar form.


Write the argument of −i.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


The amplitude of \[\frac{1}{i}\] is equal to


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

The order relation is defined on the set of complex numbers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×