हिंदी

Evaluate the Following:\[( I^{77} + I^{70} + I^{87} + I^{414} )^3\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]

उत्तर

\[\left( i^{77} + i^{70} + i^{87} + i^{414} \right)^3 = \left( i^{4 \times 19 + 1} + i^{4 \times 17 + 2} + i^{4 \times 21 + 3} + i^{4 \times 103 + 2} \right)^3 \]

\[ = \left[ \left\{ \left( i^4 \right)^{19} \times i \right\} + \left\{ \left( i^4 \right)^{17} \times i^2 \right\} + \left\{ \left( i^4 \right)^{21} \times i^3 \right\} + \left\{ \left( i^4 \right)^{103} \times i^2 \right\} \right]\]

\[ = \left( i - 1 - i - 1 \right)^3 \left( \because i^4 = 1, i^3 = - i and i^2 = - 1 \right)\]

\[ = \left( - 2 \right)^3 \]

\[ = - 8\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.1 | Q 1.6 | पृष्ठ ३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: (1 – i)4


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write 1 − i in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×