Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
उत्तर
\[( 1 + 2i )^{- 3} \]
\[ = \frac{1}{\left( 1 + 2i \right)^3}\]
\[ = \frac{1}{1 + 8 i^3 + 6i + 12 i^2}\]
\[ = \frac{1}{1 - 8i + 6i - 12} \left( \because i^2 = - 1 \text { & } i^3 = - i \right)\]
\[ = \frac{1}{- 2i - 11}\]
\[ = \frac{1}{- 2i - 11} \times \frac{- 2i + 11}{- 2i + 11}\]
\[ = \frac{- 2i + 11}{4 i^2 - 121}\]
\[ = \frac{- 2i + 11}{- 4 - 121}\]
\[ = \frac{- 2i + 11}{- 125}\]
\[ = - \frac{11}{125} + \frac{2i}{125}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The principal value of the amplitude of (1 + i) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Evaluate the following : i403
Evaluate the following : i–888
Show that 1 + i10 + i20 + i30 is a real number
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
Show that `(-1+ sqrt(3)i)^3` is a real number.