हिंदी

If Z = 1 + 2 I 1 − ( 1 − I ) 2 , Then Arg (Z) Equal - Mathematics

Advertisements
Advertisements

प्रश्न

If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal

विकल्प

  • 0

  • \[\frac{\pi}{2}\]

  • π

  • none of these.

MCQ

उत्तर

0

\[\text { Let }z = \frac{1 + 2i}{1 - \left( 1 - i \right)^2}\]

\[\Rightarrow z=\frac{1 + 2i}{1 - \left( 1 + i^2 - 2i \right)}\]

\[\Rightarrow z=\frac{1 + 2i}{1 - \left( 1 - 1 - 2i \right)}\]

\[\Rightarrow z=\frac{1 + 2i}{1 + 2i}\]

\[\Rightarrow z = 1\]

\[\text { Since point (1, 0) lies on the positive direction of real axis, we have }: \]

\[ \arg (z) = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 20 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i)4


Evaluate the following:

(ii) i528


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Solve the equation \[\left| z \right| = z + 1 + 2i\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


If z is a complex numberthen


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i888 


Show that 1 + i10 + i20 + i30 is a real number


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


State True or False for the following:

The order relation is defined on the set of complex numbers.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×