Advertisements
Advertisements
प्रश्न
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
विकल्प
0
\[\frac{\pi}{2}\]
π
none of these.
उत्तर
0
\[\text { Let }z = \frac{1 + 2i}{1 - \left( 1 - i \right)^2}\]
\[\Rightarrow z=\frac{1 + 2i}{1 - \left( 1 + i^2 - 2i \right)}\]
\[\Rightarrow z=\frac{1 + 2i}{1 - \left( 1 - 1 - 2i \right)}\]
\[\Rightarrow z=\frac{1 + 2i}{1 + 2i}\]
\[\Rightarrow z = 1\]
\[\text { Since point (1, 0) lies on the positive direction of real axis, we have }: \]
\[ \arg (z) = 0\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i)4
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i888
Show that 1 + i10 + i20 + i30 is a real number
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
The order relation is defined on the set of complex numbers.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8