Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
उत्तर
\[\frac{1}{\left( 2 + i \right)^2}\]
\[ = \frac{1}{4 + i^2 + 4i} \left( \because i^2 = - 1 \right)\]
\[ = \frac{1}{3 + 4i}\]
\[ = \frac{1}{3 + 4i} \times \frac{3 - 4i}{3 - 4i}\]
\[ = \frac{3 - 4i}{9 - 16 i^2}\]
\[ = \frac{3 - 4i}{9 + 16}\]
\[ = \frac{3}{25} - \frac{4}{25}i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The value of \[(1 + i )^4 + (1 - i )^4\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Evaluate the following : i35
Evaluate the following : i888
Evaluate the following : i403
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`